Abstract
Carbon adsorbents for RPLC separations are greatly underutilized due to the poor chromatographic properties of the earliest commercially available materials and our limited understanding of solute interactions with the solid surface. Previously, we reported on the properties of a carbon surface prepared by vapor deposition on porous zirconia microspheres. The resulting material is a new type of carbon sorbent with considerably improved chromatographic properties. Here we present a fundamental study of the intermolecular interactions influencing solute retention on these novel carbon phases under RPLC conditions. Retention on seven unique carbon phases has been correlated with solute descriptors of dispersion, dipolarity/polarizability, and hydrogen bond basicity through the use of linear solvation energy relationships (LSERs). In stark contrast, conventional bonded phases do not show the large contribution from dipolarity/ polarizability, that is observed on these types of carbon. The presence of this interaction indicates a distinct difference between carbon and conventional bonded RPLC phases. Other results suggest that solvent sorption plays a significant role in controlling solute retention on carbon. In addition, we investigated the temperature dependence of retention on carbon and found typical RPLC-like behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.