Abstract

In this work, a computational spectroscopy approach was used to provide a complete assignment of the inelastic neutron scattering spectra of three title alkoxysilane derivatives—3-aminopropyltrimethoxysilane (APTS), N-methyl-3-aminopropyltrimethoxysilane (MAPTS), and 3-aminopropyltriethoxysilane (APTES). The simulated spectra obtained from density functional theory (DFT) calculations exhibit a remarkable match with the experimental spectra. The description of the experimental band profiles improves as the number of molecules considered in the theoretical model increases, from monomers to trimers. This highlights the significance of incorporating non-covalent interactions, encompassing classical NH···N, N–H···O, as well as C–H···N and C–H···O hydrogen bond contacts, to achieve a comprehensive understanding of the system. A distinct scenario emerges when considering optical vibrational techniques, infrared and Raman spectroscopy. In these instances, the monomer model provides a reasonable description of the experimental spectra, and no substantial alterations are observed in the simulated spectra when employing dimer and trimer models. This observation underscores the distinctive ability of neutron spectroscopy in combination with DFT calculations in assessing the structure and dynamics of molecular materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.