Abstract

Over the past decade, nanomedicine has gained considerable attraction through its relevance, for example, in "smart" delivery, thus creating platforms for novel treatments. Here, we report a natural polymer-DNA conjugate that undergoes self-assembly in a K+-dependent fashion to form a G-quadruplex (GQ) and generate superpolymeric structures. We derivatized a thiolated conjugate of the naturally occurring glycosaminoglycan polymer hyaluronic acid (HASH) with short G-rich DNA (HASH-DNA) that can form an intermolecular noncanonical GQ structure. Gel mobility shift assay and circular dichroism measurements confirmed HASH conjugation to DNA and K+-dependent GQ formation, respectively. Transmission electron microscopy and scanning electron microscopy results indicated that the addition of K+ to the HASH-DNA conjugate led to the formation of micron-range structures, whereas control samples remained unordered and as a nebulous globular form. Confocal microscopy of a fluorescently labeled form of the superpolymer verified increased cellular uptake. The HASH-DNA conjugates showed toxicity in HeLa cells, whereas a scrambled DNA (Mut) conjugate HASH-Mut showed no cytotoxicity, presumably because of nonformation of the superpolymeric structure. To understand the mechanism of cell death and if the superpolymeric structure is responsible for it, we monitored the cell size and observed an average of 23% increase in size compared to 4.5% in control cells at 4.5 h. We believe that cellular stress is generated presumably by the intracellular assembly of this large superpolymeric nanostructure causing cell blebbing with no exit option. This approach provides a new strategy of cellular delivery of a targeted naturally occurring polymer and a novel way to induce superpolymeric structure formation that acts as a therapeutic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.