Abstract

To demonstrate a tagging method compatible with RT-MRI for the study of speech production. Tagging is applied as a brief interruption to a continuous real-time spiral acquisition. Tagging can be initiated manually by the operator, cued to the speech stimulus, or be automatically applied with a fixed frequency. We use a standard 2D 1-3-3-1 binomial SPAtial Modulation of Magnetization (SPAMM) sequence with 1 cm spacing in both in-plane directions. Tag persistence in tongue muscle is simulated and validated in vivo. The ability to capture internal tongue deformations is tested during speech production of American English diphthongs in native speakers. We achieved an imaging window of 650-800 ms at 1.5T, with imaging signal to noise ratio ≥ 17 and tag contrast to noise ratio ≥ 5 in human tongue, providing 36 frames/s temporal resolution and 2 mm in-plane spatial resolution with real-time interactive acquisition and view-sharing reconstruction. The proposed method was able to capture tongue motion patterns and their relative timing with adequate spatiotemporal resolution during the production of American English diphthongs and consonants. Intermittent tagging during real-time MRI of speech production is able to reveal the internal deformations of the tongue. This capability will allow new investigations of valuable spatiotemporal information on the biomechanics of the lingual subsystems during speech without reliance on binning speech utterance repetition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call