Abstract

Impulsive noise (IN) and Doppler shift can significantly degrade the performance of orthogonal frequency-division multiplexing (OFDM)-based underwater acoustic (UWA) communication systems. In this paper, we propose a receiver structure that deals efficiently with both these channel impairments in a coded OFDM-based UWA system. First, an analog nonlinear preprocessor (ANP) is proposed to efficiently detect and mitigate IN in an analog domain. The proposed ANP exhibits intermittent nonlinearity when there is impulsivity. Next, the impact of IN on a two-step Doppler shift compensation approach is quantified. Specifically, the ability of the ANP to improve the robustness of Doppler shift compensation in the presence of IN is highlighted. The performance improvement of the proposed receiver is due to the fact that unlike the other nonlinear methods, the ANP is implemented in the analog domain where the outliers are still broadband and distinguishable. The simulation results also demonstrate the superior bit-error-rate (BER) performance of our approach relative to classic approaches that use blanking and/or clipping for IN mitigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call