Abstract

Domestic sewage treatment plants often have insufficient carbon sources in the influent water. To solve this problem, the commonly used technical means include an additional carbon source, primary sludge fermentation, and excess sludge fermentation, but these methods are uneconomical, unsustainable, and not applicable to small-scale wastewater treatment plants. Intermittent microaeration technology has the advantages of low energy-consumption, ease of application, and low cost, and can effectively promote anaerobic digestion of municipal sludge; however little research has been reported on its use to enhance the carbon sources release of particulate organic matter (POM) from domestic wastewater. Therefore, the effect of intermittent microaeration on the carbon source release of POM was evaluated in this study, with POM as the control test. The results showed that the release concentration of soluble chemical oxygen demand (SCOD) was the highest on day 4 under microaerobic conditions, and the concentrations of SCOD, NH4+-N, and PO43−-P in the liquid phase were 1153, 137.1, and 13 mg/L, respectively. Compared with the control group, the SCOD concentration increased by 34.2%, and the NH4+-N and PO43−-P concentrations decreased by 18.65% and 17.09%, respectively. Intermittent microaeration can effectively promote the growth of Paludibacter, Actinomyces, and Trichococcus hydrolytic fermentation functional bacteria. Their relative abundances increased by 282.83%, 21.77%, and 23.47%, respectively, compared with the control group. It can simultaneously inhibit the growth of acetate-type methanogenic archaea, Methanosaeta and Methanosarcina, with a decrease in relative abundances of 16.81% and 6.63%, respectively. The aforementioned data show that intermittent microaeration can not only promote the hydrolysis of POM, but can also reduce the loss of acetic acid carbon source, which is a cost-effective technical way to enhance the release of a carbon source of particulate organic matter in domestic sewage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call