Abstract

It is recognized that surgical obliteration of the cerebral veins by additional brain compression using retractors is dangerous. However, there is a lack of satisfactory management of this problem. We investigated whether intermittent brain compression can reduce brain injury from cerebral venous circulation disturbances (CVCDs). In Wistar rats (n = 25), a solitary cortical vein was occluded photochemically. The brain surface was compressed by a spring balance and constant compression at 30 mmHg was carried out for 60 min. Intermittent procedure compression protocols included four 15 min compressions at 5 min intervals, intermittent isometric exposure (IM), and intermittent isotonic exposure (IT). Local cerebral blood flow (lCBF) in the compressed area was measured together by laser-Doppler (LD) with the degree of brain compression. After 24 h, the brains were examined histologically. The animals were divided into the following five groups (each n = 5): 1, a sham operated control; 2, cortical vein occlusion (VO); 3, VO + continuous brain compression (CC); 4, VO + IM; and 5, VO + IT. The lCBF decreased significantly during the compression; however, recovery after the series of compressions was observed only in the VO + IM group, not in the VO + CC and the VO + IT groups (p < 0.05). The depth of the brain surface increased stepwise in the VO + IT group compared with the VO + IM group (p < 0.01). The resulting tissue damage was significantly larger in the VO + CC and VO + IT groups than in the vein occlusion group (p < 0.05), but not in the VO + IM group. The results of the present study suggest that intermittent isometric exposure under CVCDs could decrease brain retraction injury during neurosurgical operations and be more beneficial than continuous compression, providing that the compression pressure declines as the process advances. [Neurol Res 2001; 23: 739-744]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call