Abstract

ABSTRACT Objective We aimed to explore the influence of ferroptosis on an oxygen-glucose deprivation/reoxygenation (OGD/R) model in primary rat microglia. Methods Primary microglia were extracted from rats and cultured in vitro. The cells were subjected to a hypoxic environment for 6 h in a glucose-free medium, and then re-oxygenated for 24 h in DMEM/F12. Rat microglia were pretreated with the ferroptosis activator erastin and the ferroptosis inhibitor ferrostatin 1 for 24 h, followed by detection of cell cycle progression and apoptosis by flow cytometry. Intracellular total iron levels were measured. In addition, the relative levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were determined using enzyme-linked immunosorbent assay. The protein levels of 15-lox2, GPX4, SLC7A11, ACSL4, and TFR1 were examined by western blotting. Results Compared with rat microglia subjected to OGD/R, pretreatment with erastin did not influence cell apoptosis but significantly enhanced total iron levels, MDA, and ROS levels, whereas it reduced SOD levels. Moreover, it upregulated ACSL4, TFR1, and 15-lox2 and downregulated GPX4 and SLC7A11. Pretreatment with ferrostatin 1 significantly inhibited cell apoptosis and cell cycle arrest in the G0/G1 phase. It significantly reduced total iron levels, MDA, and ROS levels and enhanced SOD levels, which also downregulated ACSL4, TFR1, and 15-lox2, and upregulated GPX4 and SLC7A11. Conclusion Our study showed that inhibition of ferroptosis is favorable against potential OGD/R-induced damage in rat microglia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call