Abstract

Intermittent hypoxia (IH) is a prominent characteristic of many clinical complications such as obstructive sleep apnea syndrome (OSAS). OSAS is related to a higher incidence of adverse pregnancy outcomes, and IH has been suggested as the preliminary physiological etiology. However, further studies remain to be performed on the underlying cellular and molecular pathogenic mechanisms of OSAS-related IH on adverse pregnancy outcomes. Here, we used a trophoblast cell line (HTR8/SVneo), primary extravillous trophoblast cells (EVTs), and a normal-term placenta villi explant culture model in vitro in this research. The effects and possible molecular mechanisms of IH on trophoblast motility, cell cycle progression, and apoptosis were investigated. IH reduced HTR8/SVneo cell and EVT motility significantly, which could be partially attributed to the reduced secretion of matrix metalloproteinase 2. IH treatment blocked HTR8/SVneo cell proliferation significantly by modulating the expression of D-type Cyclins. IH also induced significant trophoblast cell apoptosis. Moreover, our study supports the premise that IH attenuates trophoblast cell motility and proliferation and induces excessive trophoblast cell apoptosis by specifically triggering the endoplasmic reticulum (ER) stress signaling pathway. Briefly, differing from the mechanism of trophoblast motility and proliferation inhibition, and apoptosis induction by hypoxia, IH is apt to weaken trophoblast viability mainly by activating the ER stress signaling pathway with a time-dependent pattern, which is further implicated in OSAS-associated adverse pregnancy outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call