Abstract

BackgroundDietary restriction has a profound effect in altering immune system and promoting metabolic health and aging. However, how dietary restriction impacts erythroid system is largely unknown. We found that a short-term caloric restriction (CR) stimulates expression of KLF1, a master regulator of erythroid development, in the spleen of mouse, and thus explored the potential effect of CR on erythropoiesis.MethodsWe analyzed the effects of intermittent CR and continuous CR for different lengths of time on parameters of peripheral blood and erythroid profiles in the spleen and bone marrow in C57BL/6 mice. We next assessed how different types of CR affect phenylhydrazine-induced anemia in the mice. Colony formation assay was also used to analyze LK + progenitors and BFU-E in the bone marrow.ResultsIntermittent CR for 2 weeks raised the number of reticulocytes in the blood, while continuous CR for 2 weeks elevated red blood cells and hemoglobin level. Intermittent CR for 2 weeks promoted extramedullary hematopoiesis in the spleen, while continuous CR mainly promoted erythropoiesis in the bone marrow. Interestingly, a short-term intermittent CR but not continuous CR was able to ameliorate phenylhydrazine-induced anemia. Intermittent CR reduced early-stage erythroblasts and increased late-stage erythroblasts/mature RBCs in the spleen, indicating an accelerated transition from early-stage to late-stage erythroblasts/mature red blood cells. Furthermore, a short-term intermittent CR elevated LK + progenitors and the committed erythroid progenitor cells BFU-E in the bone marrow.ConclusionOur study demonstrated that a short-term intermittent CR, but not continuous CR, has a significant effect to promote hematopoiesis and such activity can ameliorate phenylhydrazine-induced acute anemia in the mouse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.