Abstract

BackgroundFish encounter oxidative stress several times during their lifetime, and it has a pervasive influence on their health and welfare. One of the triggers of oxidative stress in fish farming is the use of oxidative disinfectants to improve rearing conditions, especially in production systems employing recirculation technology. Here we report the physiological and morphological adaptive responses of Atlantic salmon (Salmo salar L.) post-smolts to intermittent exposure to a potent oxidative agent peracetic acid (PAA). Fish reared in semi-commercial scale brackish water recirculating aquaculture system (RAS) were exposed to 1 ppm PAA every 3 days over 6 weeks. Mucosal and systemic responses were profiled before exposure, 22 and 45 days during the intermittent PAA administration.ResultsOxidative stress was likely triggered as plasma antioxidant capacity increased significantly during the exposure period. Adaptive stress response to the periodic oxidant challenge was likewise demonstrated in the changes in plasma glucose and lactate levels. PAA-induced alterations in the transcription of antioxidants, cytokines, heat shock proteins and mucin genes showed a tissue-specific pattern: downregulation was observed in the gills and olfactory rosette, upregulation occurred in the skin, and no substantial changes in the liver. Further, PAA exposure resulted in histological changes in key mucosal organs (i.e. olfactory rosette, skin and gills); pathological alterations were predominant in the gills where cases of epithelial lifting, hypertrophy and clubbing were prevalent. In addition, intermittent PAA administration resulted in an apparent overproduction of mucus in the nasal mucosa. Lastly, PAA did not dramatically alter the ability of salmon to mount a physiological stress response in the presence of a secondary stressor, though some subtle interference was documented in the kinetics and magnitude of plasma cortisol and glucose response post-stress.ConclusionsThe present study collectively demonstrated that intermittent oxidant exposure was a mild environmental stressor that salmon could mount strong adaptive responses at systemic and mucosal levels. The results will be valuable in optimising the rearing conditions of post-smolts in RAS, especially in adopting water treatment strategies that do not considerably interfere with fish health and welfare.

Highlights

  • Fish encounter oxidative stress several times during their lifetime, and it has a pervasive influence on their health and welfare

  • The study revealed that intermittent exposure of salmon to peracetic acid (PAA), a strong oxidant, initiated physiological and histostructural changes, underscoring both mucosal and systemic responses

  • PAA seemed to cause an internal redox imbalance leading to systemic oxidative stress, which was compensated with increased production of systemic antioxidants

Read more

Summary

Introduction

Fish encounter oxidative stress several times during their lifetime, and it has a pervasive influence on their health and welfare. One of the triggers of oxidative stress in fish farming is the use of oxidative disinfectants to improve rearing conditions, especially in production systems employing recirculation technology. Fish reared in semi-commercial scale brackish water recirculating aquaculture system (RAS) were exposed to 1 ppm PAA every 3 days over 6 weeks. Adoption of RAS offers multiple advantages compared with traditional smolt production in flow-through systems [6], as it allows a more flexible location of the production sites, water conservation, more efficient waste management and nutrient recycling, enhanced biosecurity and disease control, prevention of escapees, and reduced susceptibility to challenging and erratic environmental conditions [4, 7]. Since fish production in RAS is generally conducted in high densities, with long water retention times and high feeding rates that promote high organic loads and micro-particle accumulation, favourable conditions for opportunistic bacterial growth may arise. Routine disinfection is a crucial component of the system

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call