Abstract

Narrow clawed crayfish, Pontastacus (Astacus) leptodactylus, represents an ecologically and economically valuable freshwater species. Despite the high importance of artificial breeding for conservation purpose and aquaculture potential, hatching protocols have not been developed so far in this species. Further, limited knowledge exists regarding the artificial egg incubation, the temperature effect on embryonic development, hatching synchronization and hatching rate. In the present study we investigated the temperature increase (from 17 oC to 22oC) effects in two different embryonic developmental stages of P. leptodactylus. Furthermore, two primer pairs for the Fibroblast Growth Factor Receptor 4 (FGFR4) gene cDNA amplification were successfully designed, characterising for the first time the FGFR4 gene in P. leptodactylus in relation to different developmental stages and temperatures. Apart from the FGFR4 gene, the Na+/K+-ATPase α-subunit expression was also explored. Both the FGFR4 and Na+/K+-ATPase α-subunit expression levels were higher in embryos closer to hatching. Egg incubation at 22oC for seven days led to significant increase of FGFR4 expression in embryos from earlier developmental stages. Nevertheless, temperature increase did not affect FGFR4 expression in eggs from latter developmental stages and Na+/K+-ATPase α-subunit expression in all developmental stages. Temperature increase represents therefore probably a promising strategy for accelerating hatching in freshwater crayfish particularly in early developmental stages. Specifically, our results indicate that FGFR4 expression increased in embryonic stages closer to hatching and that temperature influences significantly its expression in embryos from earlier developmental stages. Overall, these findings can provide a better understanding of artificial egg incubation of P. leptodactylus, and therefore can be employed for the effective management of this species, both for economic and biodiversity retention reasons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call