Abstract

Due to environmental concerns, lead-free solders were introduced in replacing the lead-based solders in microelectronics devices technology. Although there are many lead-free solder available, the Sn-Ag-Cu is considered the best choice. But the solder has its draw backs in terms of melting temperature and intermetallic formations. To improve the solder, a fourth element Zn was added into the solder. The new composite solders were synthesized via powder metallurgy route. This research studies the effect of 0.1wt% Zn addition on the hardness and intermetallic formation on Cu substrate. For the hardness results, the micro Vickers values were reported. For intermetallic, the solders were melted at 250°C and aged at 150°C until 400 hours. The microhardness value for Zn based composites solder shows higher micro Vickers hardness compared to un-doped counterparts. The phases formed and its growth was studied under SEM and by energy dispensive x-ray (EDX). The SEM results show the presence of Cu6Sn5 and Cu3Sn intermetallics and the Cu5Zn8 intermetallic was not detected. The addition of 0.1wt% Zn has retarded the growth of the Cu3Sn intermetallic but not the total intermetallic thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.