Abstract

Background and aimsVascular calcification (VC) is regarded as an independent risk factor for cardiovascular events in type 2 diabetic patients. Glucose transporter 1 (GLUT1) involves VC. Intermedin/Adrenomedullin-2 (IMD/ADM2) is a cardiovascular protective peptide that can inhibit multiple disease-associated VC. However, the role and mechanism of IMD in diabetic VC remain unclear. Here, we investigated whether IMD inhibits diabetic VC by inhibiting GLUT1. Methods and resultsIt was found that plasma IMD concentration was significantly decreased in type 2 diabetic patients and in fructose-induced diabetic rats compared with that in controls. Plasma IMD content was inversely correlated with fasting blood glucose level and VC severity. IMD alleviated VC in fructose-induced diabetic rats. Deficiency of Adm2 aggravated and Adm2 overexpression attenuated VC in high-fat diet-induced diabetic mice. In vitro, IMD mitigated high glucose-induced calcification of vascular smooth muscle cells (VSMCs). Mechanistically, IMD reduced advanced glycation end products (AGEs) content and the level of receptor for AGEs (RAGE). IMD decreased glucose transporter 1 (GLUT1) levels. The inhibitory effect of IMD on RAGE protein level was blocked by GLUT1 knockdown. GLUT1 knockdown abolished the effect of IMD on alleviating VSMC calcification. IMD receptor antagonist IMD17-47 and cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) inhibitor H89 abolished the inhibitory effects of IMD on GLUT1 and VSMC calcification. ConclusionsThese findings revealed that IMD exerted its anti-calcification effect by inhibiting GLUT1, providing a novel therapeutic target for diabetic VC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call