Abstract

The intermediate water circulation in the North Pacific subarctic and northern subtropical regions is investigated through inverse analysis, focusing on the volume and heat transports from the subtropical to the subarctic regions. The inverse method we adopted is a hybrid method of β‐spiral and box inverse methods which permits diapycnal flux. The isopycnal velocities estimated through the inverse analysis are mostly consistent with the oxygen distribution and support the hypothesis that warm and saline intermediate water is transported from the transition domain east of Japan to the northern Gulf of Alaska. The northward volume transport across 46°N between 158°E and 130°W is estimated to be −0.2 to 5.3 Sv in the density range of 26.7–27.2σθ. The upward diapycnal transports in the open subarctic North Pacific (region N) across 26.7 and 27.2σθ isopycnal surfaces are estimated to be 0.2 to 1.5 Sv and −0.2 to 0.9 Sv, respectively. Part of the water transported upward across 26.7σθ might outcrop and be carried to the subtropical region by the southward Ekman drift. Through the examination of heat balance of the intermediate layer in the subarctic region, it is suggested quantitatively that the intermediate heat transport from the south plays an essential role in maintaining the heat of the mesothermal waters in the subarctic region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call