Abstract

To elucidate how surface and gaseous phases interact each other to induce chemical reactions, X-ray photoelectron spectroscopy (XPS) analyses were carried out on powders as milling took place. An acute analysis of data acquired by the XPS-technique allowed us to find a series of well-defined chemical transitions from precursors to the stoichiometric PbTe phase. By coupling, theoretical and experimental data a self-consistent model was developed.Initially, the process manifested itself as an oxidation stage and secondly as a reducing process. In agreement with a thermodynamic evaluation of free energy of phases traced during milling, chemical transitions were traced as Te2+ to Te6+ in oxidation reactions. If high oxygen potential prevails in the milling system subsequently Pb2+ evolves to Pb4+. On the other way, high valence oxides like Pb4+ or Te4+ were reduced to Pb2+ and Te2−. However, the last transition an asymmetric transformations was identified as non-stoichiometric phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.