Abstract
An intermediate Hamiltonian Fock-space coupled cluster method is introduced, based on the formalism developed by Malrieu and co-workers in the context of perturbation theory. The method is designed to make possible the use of large P spaces while avoiding convergence problems traceable to intruder states, which often beset multireference coupled cluster schemes. The essence of the method is the partitioning of P into a main Pm and an intermediate Pi serving as buffer, with concomitant definition of two types of wave and excitation operators. Application to atomic barium and radium yields converged results for a large number of states not accessible by traditional Fock-space coupled cluster. Moreover, states calculated by both methods exhibit better accuracy (by a factor of 2–5) in the intermediate Hamiltonian approach. Energies are given for low-lying states of Ra which have not been observed experimentally.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have