Abstract
Finitely generated solvable Lie algebras have an intermediate growth between polynomial and exponential. Recently the second author suggested the scale to measure such an intermediate growth of Lie algebras. The growth was specified for solvable Lie algebras F(A q , k) with a finite number of generators k, and which are free with respect to a fixed solubility length q. Later, an application of generating functions allowed us to obtain more precise asymptotic. These results were obtained in the generality of polynilpotent Lie algebras. Now we consider the case of Lie superalgebras; we announce that main results and describe the methods. Our goal is to compute the growth for F(A q , m, k), the free solvable Lie superalgebra of length q with m even and k odd generators. The proof is based upon a precise formula of the generating function for this algebra obtained earlier. The result is obtained in the generality of free polynilpotent Lie superalgebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.