Abstract

Interleukin-1 beta and forskolin induce prostaglandin E2 release as well as 14-kDa group II phospholipase A2 gene expression and secretion of the enzyme from rat glomerular mesangial cells. We now report that pretreatment of mesangial cells with transforming growth factor-beta 2 prior to stimulation with interleukin-1 beta or forskolin inhibits the induced release of prostaglandin E2. At the same time the secretion of group II phospholipase A2, measured both as enzyme activity with sn-2-labeled phosphatidylethanolamine as substrate and as enzyme protein in immunoblot experiments, is dose-dependently inhibited by pretreatment of the cells with transforming growth factor-beta 2. Analyses of enzyme activity and enzyme protein levels in the cells indicated that this is not due to inhibition of enzyme secretion with a concomitant increase in cellular levels of the enzyme. Rather, pretreatment of the cells with transforming growth factor-beta 2 largely prevented both the interleukin-1 beta- and the forskolin-induced synthesis of phospholipase A2. This is the first report indicating an inhibition of group II phospholipase A2 gene expression by transforming growth factor-beta 2. In line with those results, transforming growth factor-beta 2 did not induce the synthesis and secretion of group II phospholipase A2. However, under conditions where the interleukin-1 beta-induced expression of group II phospholipase A2 is fully suppressed by transforming growth factor-beta 2, the growth factor itself stimulated prostaglandin E2 synthesis by a mechanism apparently not involving group II phospholipase A2. The immunochemical identification of the inducible and secretable phospholipase A2 from rat mesangial cells as a group II enzyme was confirmed by purification and N-terminal amino acid sequence determination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.