Abstract
In the developing retina, precise coordination of cell proliferation, differentiation, and survival is essential for proper retinal maturation and function. We have previously reported evidence that interleukin-4 (IL-4) plays critical roles in neuronal differentiation and survival during retinal development. However, little is known about the role of IL-4 on retinal cell proliferation. In the current study, we investigated if IL-4 regulates cell proliferation induced by epidermal growth factor (EGF) and by fibroblast growth factor 2 (FGF2) in primary retinal cell cultures obtained from newborn rats. First, we show that EGF and FGF2 act as mitogens for glial cells, increasing proliferation of these cells in the retina. EGF- and FGF2-induced mitogenesis requires activation of distinct cell-intrinsic signals. In retinal cells exposed to FGF2, IL-4 downregulates p53 levels (a protein whose activation induces cell-cycle arrest) and increases mitogenic responsiveness to FGF2 through activation of protein kinase A (PKA) pathway. Conversely, in retinal cells exposed to EGF, IL-4 downregulates cyclin D1 levels (a protein required for cell-cycle progression), upregulates p53 levels, and decreases mitogenic responsiveness to EGF. The inhibitory effect induced by IL-4 on retinal cells exposed to EGF requires activation of Janus kinase 3 (JAK3), but not activation of PKA. Based on previous and current findings, we propose that IL-4 serves as a node of signal divergence, modulating multiple cell-intrinsic signals (e.g., cyclin D1, p53, JAK3, and PKA) and mitogenic responsiveness to cell-extrinsic signals (e.g., FGF2 and EGF) to control cell proliferation, differentiation, and survival during retinal development.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have