Abstract

To study cytokine regulation of the 5-lipoxygenase (5-LO)/leukotriene (LT) synthase pathway we have developed mouse bone marrow-derived mast cells (BMMC) that minimally express each protein of the pathway by using a novel culture system, lacking interleukin (IL)-3. When mouse bone marrow cells were cultured for 5 weeks with 100 ng/ml c-kit ligand (KL) and 10 units/ml IL-10, a population of > 95% mast cells was obtained. These cells generated 8.3 +/- 4.5 ng of LTC4/10(6) cells and 8.1 +/- 2.4 ng of prostaglandin (PG) D2/10(6) cells after IgE-dependent activation. When these BMMC were cultured for 2-5 weeks more with 100 units/ml IL-3 in the continued presence of KL and IL-10, the IgE-dependent generation of LTC4 and PGD2 increased to 212 +/- 36 and 25.5 +/- 8.6 ng/10(6) cells, respectively. The dramatic increase in the IgE-dependent generation of LTC4 in response to IL-3 was accompanied by a concomitant increase in expression of 5-LO and 5-LO-activating protein and preceded the increased expression of cytosolic phospholipase A2 and LTC4 synthase. The recognition that IL-3 up-regulates the expression of each protein of the 5-LO pathway for the generation of LTC4 contrasts with our recent finding that KL up-regulates the expression of cytosolic phospholipase A2, prostaglandin endoperoxide synthase-1, and hematopoietic PGD2 synthase and increases the IgE-dependent generation of PGD2 in BMMC developed from bone marrow with IL-3. Thus, developmentally segregated regulation of the prostanoid and cysteinyl leukotriene pathways in lineage-related committed mast cell progenitors reveals the pleiotropism of this effector cell of allergic inflammation, a cytokine/growth factor basis for preferential expression of pathways of eicosanoid biosynthesis, and the particular role of IL-3 in regulating the expression of the proteins of the 5-LO/LTC4 synthase pathway.

Highlights

  • From the Department of Medicine, Harvard Medical School and the Department of Rheumatology and Immunology, Brigham and Women’s Hospital, Boston, Massachusetts 02115

  • The recognition that IL-3 up-regulates the expression of each protein of the 5-LO pathway for the generation of LTC4 contrasts with our recent finding that kit ligand (KL) up-regulates the expression of cytosolic phospholipase A2, prostaglandin endoperoxide synthase-1, and hematopoietic PGD2 synthase and increases the IgE-dependent generation of PGD2 in bone marrow-derived mast cells (BMMC) developed from bone marrow with IL-3

  • We have recently reported that the prostanoid pathway of IL-3-developed BMMC could be up-regulated 5–7-fold by stimulation with KL ϩ IL-10 through induction of cytosolic phospholipase A2, prostaglandin endoperoxide synthase (PGHS)-1, and hematopoietic PGD2 synthase [6]

Read more

Summary

Introduction

To study cytokine regulation of the 5-lipoxygenase (5-LO)/leukotriene (LT) synthase pathway we have developed mouse bone marrow-derived mast cells (BMMC) that minimally express each protein of the pathway by using a novel culture system, lacking interleukin (IL)-3. When these BMMC were cultured for 2–5 weeks more with 100 units/ml IL-3 in the continued presence of KL and IL-10, the IgE-dependent generation of LTC4 and PGD2 increased to 212 ؎ 36 and 25.5 ؎ 8.6 ng/106 cells, respectively.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.