Abstract
A proinflammatory cytokine, interleukin 23 (IL-23), plays a role in tumor progression by inducing inflammation in the tumor microenvironment, although there is debate about its role in carcinogenesis. Direct effects of IL-23 on tumor cells have been reported rarely, and contradictory effects have been observed. Here, we studied such effects of IL-23 in lung cancer cells in vitro and in vivo and explored the underlying mechanism. We found IL-23 receptor expression in tissues from lung adenocarcinoma and small cell carcinoma but not in lung squamous cell carcinoma tissue. Interestingly, different concentrations of IL-23 had opposite effects in the same types of cells. We confirmed that the different effects could be explained by differences in binding to the IL-23 receptor (subunits IL-23r and IL-12Rβ1). Low concentrations of IL-23 promoted the proliferation of IL-23 receptor-positive A549 and SPCA-1 lung cancer cells by binding to IL-23r, whereas high concentrations of IL-23 inhibited proliferation of these cells by binding to both IL-23r and IL-12Rβ1. In contrast, IL-23 had no effect on IL-23 receptor-negative SK-MES-1 cells. IL-23 regulated the growth of human lung cancer cells through its effects on STAT3 expression and phosphorylation in a concentration-dependent way; the Ki-67 gene was involved in these processes. Our findings demonstrate for the first time that IL-23 affects the proliferation of IL-23 receptor-positive lung cancer cells and that this effect is dependent on the IL-23 concentration. This can explain at least part of the inconsistent reports on the role of IL-23 in the progression of carcinogenesis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have