Abstract

The interleukin (IL)-1 family play a fundamental role as immune system modulators. Our previous transcriptome-analyses of leukocytes from lumpfish (Cyclopterus lumpus L.) showed that IL-1β was among the most highly upregulated genes following bacterial exposure. In the present study, we characterized IL-1 signaling pathways, identified and characterized four ligands of the IL-1 family in lumpfish; IL-1β type I and type II, IL-18, and the novel IL-1 family members (nIL-1F), both at mRNA and gene levels. The two IL-1β in lumpfish is termed IL-1β1 (type II) and IL-1β2 (type I). Furthermore, a comprehensive phylogenetic analysis of 277 IL-1 ligands showed that nIL-1F, in common with IL-1β, likely represents an ancestral gene, as representatives for nIL-1F were found in cartilaginous and lobe-finned fish, in addition to teleosts. This shows that nIL-1F is not exclusively present in teleosts as previously suggested. Our analyses of exon-intron structures, intron phases, phylogeny and synteny clearly show the separation of IL-1β into groups; type I and type II, which likely is a result of the third whole genome duplication (3R WGD). The phylogenetic analysis shows that most teleosts have both type I and type II. Furthermore, we have determined transcription levels of the IL-1 ligands in leukocytes and 16 different tissues, and their responses upon in vitro stimulation with seven different ligands. In addition, we have identified the IL-1 receptors IL-1R1, IL-1R2, IL-1R4 (ST2/IL-33 receptor/IL-1RL), IL-1R5 (IL-18R1), and partial sequences of DIGIRR and IL-1R3 (IL-RAcP). Identification of immune molecules and description of innate responses in lumpfish is interesting for comparative and evolutionary studies and our study constitutes a solid basis for further functional analyses of IL-1 ligands and receptors in lumpfish. Furthermore, since lumpfish are now farmed in large numbers to be used as cleaner fish for removal of sea lice on farmed salmon, in-depth knowledge of key immune molecules, signaling pathways and innate immune responses is needed, as the basis for design of efficient immune prophylactic measures such as vaccination.

Highlights

  • Cytokines belonging to the IL-1 family are key mediators of the body’s response to microbial invasion, inflammation, immunological reactions, and tissue injury

  • The differential gene expression (DEG) analysis upon bacterial exposure showed that the transcript level of genes belonging to the canonical NF-kappa B pathway (e.g., IL-1β1, IL-8, TNFα, and COX2) were most highly upregulated compared with the atypical and non-canonical pathway (Figure 1A and Supplemental Table 2), and the level of expression was higher at 24 hpe than 6 hpe (Figure 1A)

  • In a previous transcriptome-wide study of lumpfish leukocytes, we identified IL-1β1 and a partial sequence of a new interleukin1 family member, novel IL-1 family members (nIL-1F)

Read more

Summary

Introduction

Cytokines belonging to the IL-1 family are key mediators of the body’s response to microbial invasion, inflammation, immunological reactions, and tissue injury. Multiple paralogs of many cytokines [2] and multiple IL-1β have been identified in several fish species, including channel catfish [3], salmon, trout [4, 5] and carp [3, 6]. The genes encoding IL1β in teleost fish are divided into two groups (type I and II) based on the number of exon/intron and synteny analyses [4, 7]. Type I has been identified in species belonging to Neoteleostei and Protacanthopterygii, e.g., carp, cod, salmon, and in the most evolutionary advanced fishes, such as gilthead seabream (Sparus aurata), European seabass, three-spined stickleback, Nile tilapia, southern platyfish, Japanese rice fish and Japanese flounder [8]. Gene expression studies of IL-1β have shown that it is significantly upregulated in immune tissues, in primary cultures and cell lines in response to immunostimulants, immune response modifiers and/or pathogens [reviewed in [2]]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call