Abstract
Fiber metal laminates (FMLs) are a novel lightweight composite material, predominantly utilized in the aerospace sector for large-scale components like skin panels and fuselages. However, research on FMLs in the microsystem domain remains limited. Additionally, they are influenced by scale effects, rendering macroscopic forming theories inadequate for microforming applications. The application of ultra-thin fiber metal laminates in the microsystem field is hindered by this constraint. This paper investigates the friction performance of ultra-thin TA1 titanium alloy/carbon fiber-reinforced plastic (CFRP) laminates at the microscale. The content of the epoxy resin used is 38.0 ± 3.0%. Friction tests on ultra-thin TA1/CFRP laminates were conducted based on the Striebeck friction theory model. The effects of factors such as the weaving method, ply angle, normal force, tensile speed, and temperature on friction performance are explored in the study. Furthermore, the influences of geometric scale and grain scale on friction performance are examined. Geometric scale effects indicate that an increase in laminate width leads to an increase in the friction coefficient. Grain-scale effects demonstrate that as grain size increases, the friction coefficient also increases, attributed to reduced grain boundaries, increased twinning, and increased surface roughness of the metal. Finally, surface morphology analysis of the metal and fiber after friction tests further confirms the influence of grain size on the friction coefficient. Through detailed experimental design, result analysis and graphical representation, this paper provides a scientific basis for understanding and predicting the friction behavior of ultra-thin TA1/CFRP laminates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have