Abstract
Flexible ferroelectric capacitors with high energy density and storage efficiency are highly desirable in the next generation of flexible electronic devices. To develop high-performance ferroelectric capacitors, a conventional approach is chemical modification. Here, a novel approach of interlayer coupling is proposed to achieve high energy storage performance in BiMg0.5Ti0.5O3-BaTiO3/BiMg0.5Ti0.5O3 (BMT-BTO/BMT)N multilayer ferroelectric films fabricated on flexible mica substrates via a sol-gel coating method. The interlayer electrostatic coupling between the ferroelectric BMT and relaxor ferroelectric BMT-BTO layers leads to small remnant polarization and large breakdown field strength, resulting in an outstanding energy storage density of ∼106.8 J cm-3 and a good efficiency of ∼75.6% in the multilayer thin films. Further, the energy storage performance remains stable in a wide range of temperatures (25-200 °C) and frequencies (500 Hz to 10 kHz) after 108 electrical loading cycles. The energy storage performance also has no obvious deterioration when the multilayer film experiences 104 mechanical bending cycles with a bending radius of 4 mm. The approach proposed in the present work should be generally implementable in other multilayer flexible ferroelectric capacitors and offers a novel avenue to enhance energy storage performance by tuning the interlayer coupling.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have