Abstract
It is fundamentally important to understand how the interlayer interaction of neighboring graphene sheets is influenced by chemical doping. Here we investigate the interlayer coupling of multilayer graphene doped with controlled boron content via the Raman-active in-plane shear mode. The experimental results reveal a remarkable decline in the interlayer shear modulus as boron content increases, which is a direct consequence of the enlarged interlayer spacing, further supported by the molecular dynamic (MD) simulations. Nanoindentation tests were conducted to clarify the influence of interlayer coupling behaviors on nanomechanical behaviors of boron-doped bilayer graphene. As the interlayer slippage is induced under shear deformations, the weakened shear resistance would lead to the reduced energy dissipation during sliding process. Our results provide valuable insight into fundamental mechanical properties of boron-doped graphene and its interfaces and potentially allows tailoring of interlayer coupling f...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.