Abstract
Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a diamond anvil surface. The applied hydrostatic pressure changes from ambient pressure up to 11.05 GPa using a diamond anvil cell device. Raman, photoluminescence, and reflectivity spectra at room temperature are analyzed to characterize the interlayer coupling of this bilayer system. With the increase of pressure, the indirect exciton emission disappears completely at about 5 GPa. Importantly, we clearly observed the interlayer exciton from the reflectivity spectra, which becomes invisible at a low pressure around 1.26 GPa. This indicates that the interlayer exciton is very sensitive to the hydrostatic pressure due to the oscillator strength transfer from the direct transition to the indirect one.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have