Abstract
In the present work, the mode I fracture toughness at the initiation of a crack in a metal-composite bonded joint under high-speed loading is calculated, considering the effect of the elastic vibration of the specimen. A new hybrid analytical-experimental method is developed, which integrates kinematics from Digital Image Correlation (DIC) analysis to an analytical model to determine the fracture toughness and its individual components. The analytical model is based on Timoshenko beam theory and incorporates a Lagrangian contact formulation. The conditions under which the hybrid method can be applied are analysed. The experiments are conducted on a novel test set-up, featuring a wedge accelerated by a projectile from an air gun that is able to load the Double Cantilever Beam (DCB) specimen with an opening displacement rate up to 2m/s. The results reveal a correlation between the fracture toughness, the displacement rate, and the vibrational characteristics of the specimen.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have