Abstract
To reveal the possible routine of brain network dynamic alterations in patients with mesial temporal lobe epilepsy (mTLE) and to establish a predicted model of seizure recurrence during interictal periods. Seventy-nine unilateral mTLE patients with hippocampal sclerosis and 97 healthy controls from two centers were retrospectively enrolled. Dynamic brain configuration analyses were performed with resting-state functional magnetic resonance imaging (MRI) data to quantify the functional stability over time and the dynamic interactions between brain regions. Relationships between seizure frequency and ipsilateral hippocampal module allegiance were evaluated using a machine learning predictive model. Compared to the healthy controls, patients with mTLE displayed an overall higher dynamic network, switching mainly in the epileptogenic regions (false discovery rate [FDR] correctedp-FDR < .05). Moreover, the dynamic network configuration in mTLE was characterized by decreased recruitment (intra-network communication), and increased integration (inter-network communication) among hippocampal systems and large-scale higher-order brain networks (p-FDR < .05). We further found that the dynamic interactions between the hippocampal system and the default-mode network (DMN) or control networks exhibited an opposite distribution pattern (p-FDR < .05). Strikingly, we showed that there was a robust association between predicted seizure frequency based on the ipsilateral hippocampal-DMN dynamics model and actual seizure frequency (p-perm < .001). These findings suggest that the interictal brain of mTLE is characterized by dynamical shifts toward unstable state. Our study provides novel insights into the brain dynamic network alterations and supports the potential use of DMN dynamic parameters as candidate neuroimaging markers in monitoring the seizure frequency clinically during interictal periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.