Abstract

The piriform cortex (PC) plays a critical role in ictogenesis, where an excitation/inhibition imbalance contributes to epilepsy etiology. However, the epileptic dynamics of the gamma-aminobutyric acid (GABA) system and the precise role of GABAergic neurons within the PC in epilepsy remain unclear. We combined Ca2+ and GABA sensors to investigate the dynamics of Gad2-expressing neurons and GABA levels, and selectively manipulated GABAergic neurons in the PC through chemogenetic inhibition and caspase3-mediated apoptosis targeting Gad2 interneurons. GABAergic system dynamics in the PC were bidirectional and asymmetric,accompanied by PC optokindling-induced seizures, notably characterized by a robust response of Gad2 neurons but a rapid descent of GABA content during seizures. Chemogenetic inhibition of PC Gad2 neurons induced seizure-like behavior, with a discrepancy between the GABAergic neuron activities and GABA levels, signifying a transition from interictal to ictal states. Surprisingly, selective inhibition of Gad2 neurons in the PC produced paradoxical activation in a subset of Gad2 neurons. Moreover, the chronic deficiency of PC Gad2 neurons triggered spontaneous recurrent seizures. Our findings uncover the dynamic interplay within PC inhibitory components and elaborate counteractive mechanisms in seizure regulation. These insights could inform future therapeutic strategies targeting GABAergic neurons to control epileptic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.