Abstract

Acetabularia rhodopsin II (ARII or Ace2), an outward light-driven algal proton pump found in the giant unicellular marine alga Acetabularia acetabulum, has a unique property in the cytoplasmic (CP) side of its channel. The X-ray crystal structure of ARII in a dark state suggested the formation of an interhelical hydrogen bond between C218ARII and D92ARII, an internal proton donor to the Schiff base (Wada et al., 2011). In this report, we investigated the photocycles of two mutants at position C218ARII: C218AARII which disrupts the interaction with D92ARII, and C218SARII which potentially forms a stronger hydrogen bond. Both mutants exhibited slower photocycles compared to the wild-type pump. Together with several kinetic changes of the photoproducts in the first half of the photocycle, these replacements led to specific retardation of the N-to-O transition in the second half of the photocycle. In addition, measurements of the flash-induced proton uptake and release using a pH-sensitive indium-tin oxide electrode revealed a concomitant delay in the proton uptake. These observations strongly suggest the importance of a native weak hydrogen bond between C218ARII and D92ARII for proper proton translocation in the CP channel during N-decay. A putative role for the D92ARII-C218ARII interhelical hydrogen bond in the function of ARII is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call