Abstract
Parvularcula oceani xenorhodopsin is the first light-driven inward proton pump. To understand the mechanism of inward proton transport, comprehensive transient absorption spectroscopy was conducted. Ultrafast pump-probe spectroscopy revealed that the isomerization time of retinal is 1.2 ps, which is considerably slower than those of other microbial rhodopsins (180-770 fs). Following the production of J, the K intermediate was formed at 4 ps. Proton transfer occurred on a slower timescale. Proton release and uptake were observed on the L/M-to-M and M decay, respectively, by monitoring transient absorption changes of pH-indicating dye, pyranine. Although a proton was released from Asp216 into the cytoplasmic medium, no proton-donating residue was identified on the extracellular side in mutation experiments. We revealed that a branched retinal isomerization (from 13-cis-15-anti to 13-cis-15-syn and all-trans-15-anti) occurred simultaneously with proton uptake. Furthermore, although the proton release showed a large kinetic isotope effect (KIE), the KIE of proton uptake was negligible. These results suggest that retinal isomerization is the rate-limiting process in proton uptake and that the regulation of p Ka of the retinal Schiff base by thermal isomerization enables the uptake from extracellular medium. This proton uptake mechanism differs from that of the outward proton pump with an internal proton donor and is important for understanding how the direction of ion transport by membrane proteins is determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.