Abstract

This study investigates the influence of molten nitrate salt exposure on the intergranular corrosion (IGC) behavior of three grades of austenitic stainless steel (namely, AISI 304, AISI 304H, and AISI 321H). Two electrochemical techniques, double loop electrochemical potentiokinetic reactivation and potentiodynamic polarization methods, are applied after stainless steel is exposed to 600 °C molten nitrate salt, 60% NaNO3, and 40% KNO3 for varying immersion durations. Corrosion morphology is examined using optical microscopy and scanning electron microscopy images to assess susceptibility to IGC. IGC is prompted by the presence of chromium carbides at grain boundaries, which leads to chromium depletion around these carbides. The findings of the experiments reveal distinct IGC behavior among stainless steel grades. For AISI 304, the degree of sensitization (DOS) increases as exposure time progresses. However, AISI 304H and AISI 321H stainless steel exhibit diminishing DOS after 100 and 10 h of exposure, respectively. This trend is attributed to desensitization or the healing effect when stainless steel is exposed to molten salt for a prolonged time. The depletion and recovery of Cr near grain boundaries are confirmed by the inverse relationship to DOS of pitting potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call