Abstract

Solid-state electrolytes have emerged as a key area of development in the field of Li-ion batteries owing to safety concerns surrounding liquid electrolytes. Among solid-state electrolytes, Li1.5Al0.5Ti1.5(PO4)3 (LATP), a NASICON-type material, is a leading candidate owing to its promising ionic conductivity, chemical and environmental stability, and cost-effectiveness. However, its ionic conductivity is limited by grain-boundary scattering, which hinders its broader adoption. Herein, we introduce a novel grain-boundary engineering strategy for the LATP electrolyte system using typical solid-state method, wherein a Ge-rich liquid phase spontaneously forms at the grain boundaries of GeO2-enriched LATP during synthesis, producing an intergranular amorphous film in the final material that significantly enhances Li-ion transport at the grain boundaries. With an optimal content of 4 wt% GeO2, the ionic conductivity reaches 8.92 × 10−4 S cm−1—an eightfold increase compared to that of pristine LATP. This high ionic conductivity also bestows 4 wt% GeO2-LATP with excellent cell performance, with a symmetric Li/4 wt% GeO2-LATP/Li cell exhibiting stable operation for over 500 h with low overpotentials. Our findings underscore the importance of grain-boundary engineering in advancing solid-state electrolytes and pave the way for the commercialization of next-generation all-solid-state Li-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call