Abstract

BackgroundInterferon-γ (IFN-γ) is critical for innate and adaptive immunity against viral and bacterial infections. IFN-γ reportedly affects the phagocytic ability of monocytes and macrophages as well as regulates pituitary function in humans and mice. The present study analyzed the impact of IFN-γ on monocyte and macrophage phagocytosis, production performance, and pituitary function in vivo and in vitro (in dwarf chickens). IFN-γ was injected into dwarf chickens through a vein, and then, the laying rate, average egg weight, and levels of follicle-stimulating hormone (FSH) and IFN-γ were measured in treatment and control groups. For the in vitro experiment, the pituitary tissues were supplemented with IFN-γ, and the mRNA expression levels of follicle-stimulating hormone beta subunit (FSH-β), interferon gamma receptor 1 (IFNGR1), and interferon gamma receptor 2 (IFNGR2) in the pituitary were assessed.ResultsMonocyte and macrophage phagocytosis product (PP) was decreased by IFN-γ treatment in a dose-dependent manner in vitro. In the in vivo experiment, the level of IFN-γ in the treatment group was higher than that in the control group at 7 d (P < 0.05), 14 d (P < 0.01), and 21 d (P < 0.01) post-injection. Compared with the control group, monocyte and macrophage PP was lower in the treatment group after injection (P < 0.01). The laying rate was higher in the treatment group than in the control group at 2 and 3 wk post-injection (P < 0.05). There was a significant difference between the treatment and control groups in the levels of FSH at 1, 3, 7, and 14 d post-injection (P < 0.01). In the in vitro experiment, increased mRNA expression levels of FSH-β, IFNGR1, and IFNGR2 were observed in the treatment group after stimulation with 100 U/mL IFN-γ for 24 h compared to those in the control group (P < 0.05).ConclusionsIFN-γ inhibited the phagocytosis of monocytes and macrophages; up-regulated the mRNA expression levels of the FSH-β, IFNGR1, and IFNGR2; enhanced the secretion of FSH; and improved the laying rate. IFN-γ might be an important regulator in the trade-off between the immune effect and production performance in dwarf chickens.

Highlights

  • Interferon-γ (IFN-γ) is critical for innate and adaptive immunity against viral and bacterial infections

  • The effect of IFN-γ on monocyte and macrophage phagocytosis product (PP) in vitro The results showed that monocyte and macrophage PP decreased in a dose-dependent manner after stimulation with chicken IFN-γ for 48 h (Fig. 1)

  • The present study demonstrated that IFN-γ has an inhibitory effect on the phagocytosis of monocytes and macrophages in a dose-dependent manner in vitro

Read more

Summary

Introduction

Interferon-γ (IFN-γ) is critical for innate and adaptive immunity against viral and bacterial infections. The present study analyzed the impact of IFN-γ on monocyte and macrophage phagocytosis, production performance, and pituitary function in vivo and in vitro (in dwarf chickens). IFN-γ was injected into dwarf chickens through a vein, and the laying rate, average egg weight, and levels of follicle-stimulating hormone (FSH) and IFN-γ were measured in treatment and control groups. Infections caused by various pathogens were observed in turkeys artificially selected for high egg production [6]. Other researchers showed that White Leghorn chickens with low antibodies to sheep red blood cells showed increased egg production after artificial selection for 24 generations [3]. Our previous study indicated that dwarf chickens with low levels of monocyte and macrophage phagocytosis exhibited low antibody titers to avian influenza H9 but greater laying rates during the early laying period (unpublished observations). The trade-off between the immune effect and production performance remains to be clarified

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call