Abstract
IntroductionInterferon alpha (IFN-α) has a complex role in autoimmunity, in that it may both enhance and prevent inflammation. We have previously shown that the presence of IFN-α at sensitization protects against subsequent antigen-triggered arthritis. To understand this tolerogenic mechanism, we performed a descriptive, hypothesis-generating study of cellular and humoral responses associated with IFN-α-mediated protection against arthritis.MethodsArthritis was evaluated at day 28 in mice given a subcutaneous injection of methylated bovine serum albumin (mBSA), together with Freund adjuvant and 0 to 5,000 U IFN-α at days 1 and 7, followed by intraarticular injection of mBSA alone at day 21. The effect of IFN-α on mBSA-specific IgG1, IgG2a, IgG2b, IgA, and IgE was evaluated by enzyme-linked immunosorbent assay (ELISA). Cytokines in circulation and in ex vivo cultures on mBSA restimulation was evaluated with ELISA and Luminex, and the identity of cytokine-producing cells by fluorescence-activated cell sorting (FACS) analysis.ResultsAdministration of IFN-α protected mice from arthritis in a dose-dependent manner but had no effect on antigen-specific antibody levels. However, IFN-α did inhibit the initial increase of IL-6, IL-10, IL-12, and TNF, and the recall response induced by intraarticular mBSA challenge of IL-1β, IL-10, IL-12, TNF, IFN-γ, and IL-17 in serum. IFN-α decreased both macrophage and CD4+ T cell-derived IFN-γ production, whereas IL-17 was decreased only in CD4+ T cells. Ex vivo, in mBSA-restimulated spleen and lymph node cell cultures, the inhibitory effect of in vivo administration of IFN-α on proinflammatory cytokine production was clearly apparent, but had a time limit. An earlier macrophage-derived, and stronger activation of the antiinflammatory cytokine transforming growth factor beta (TGF-β) was observed in IFN-α-treated animals, combined with an increase in CD4+ T cells producing TGF-β when arthritis was triggered by mBSA (day 21). Presence of IFN-α at immunizations also prevented the reduction in TGF-β production, which was induced by the intraarticular mBSA injection triggering arthritis in control animals.ConclusionsAdministration of IFN-α has a profound effect on the cellular response to mBSA plus adjuvant, but does not affect antigen-specific Ig production. By including IFN-α at immunizations, spleen and lymph node cells inhibit their repertoire of antigen-induced proinflammatory cytokines while enhancing antiinflammatory TGF-β production, first in macrophages, and later also in CD4+ T cells. On intraarticular antigen challenge, this antiinflammatory state is reenforced, manifested as inhibition of proinflammatory recall responses and preservation of TGF-β levels. This may explain why IFN-α protects against antigen-induced arthritis.
Highlights
Interferon alpha (IFN-α) has a complex role in autoimmunity, in that it may both enhance and prevent inflammation
Type I interferon (IFN), mainly IFN-α and IFN-β, are important antiviral cytokines that have complex roles in regulating inflammation. They may enhance immune responses contributing to effective viral clearance, but excessive activation of type I IFN production may lead to chronic inflammatory conditions, such as systemic lupus erythematosus (SLE) [1]
At day 21, 30 μg of methylated bovine serum albumin (mBSA) dissolved in 20 μl phosphate-buffered saline (PBS) was given intraarticularly in the left knee, and the same amount of PBS was injected in the right knee
Summary
Interferon alpha (IFN-α) has a complex role in autoimmunity, in that it may both enhance and prevent inflammation. We have previously shown that the presence of IFN-α at sensitization protects against subsequent antigen-triggered arthritis. To understand this tolerogenic mechanism, we performed a descriptive, hypothesis-generating study of cellular and humoral responses associated with IFN-α-mediated protection against arthritis. Type I interferon (IFN), mainly IFN-α and IFN-β, are important antiviral cytokines that have complex roles in regulating inflammation. They may enhance immune responses contributing to effective viral clearance, but excessive activation of type I IFN production may lead to chronic inflammatory conditions, such as systemic lupus erythematosus (SLE) [1]. To develop safer therapeutics and to isolate the pro- or antiinflammatory properties of type I IFN (which could broaden the therapeutic applications of modulation of type I IFN signaling), it is important to understand the mechanisms behind its pro- and antiinflammatory effects
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have