Abstract

Cylindrical surfaces widely used in high-energy laser systems can have nearly semi-meter-scale dimensions, and aperture angles can exceed R/3. State-of-the-art interferometric stitching test methods involve stitching only along the arc direction, and the reported dimensions of ∼50 × 50 mm2 are far smaller than those required in high-energy laser systems. To rectify this limitation, an interferometric stitching method for cylindrical surfaces with large apertures is proposed. Moreover, a subaperture stitching algorithm that can stitch along both the linear and arc directions is developed. An interferometric stitching workstation equipped with a six-axis motion stage and a series of computer-generated holograms is established, where cylindrical surfaces with R/# values as large as R/0.5 and apertures up to 700 mm can be tested based on the theoretical analysis. A convex cylindrical surface with a 350 × 380 mm2 aperture is tested to validate the proposed method's feasibility in enlarging the testable aperture of cylindrical surfaces significantly from Ф50 mm to Ф700 mm, thereby promoting the application of large cylindrical surfaces in high-energy laser systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.