Abstract
We present the results of long-baseline optical interferometry observations using the Precision Astronomical Visual Observations (PAVO) beam combiner at the Center for High Angular Resolution Astronomy (CHARA) Array to measure the angular sizes of three bright Kepler stars: {\theta} Cygni, and both components of the binary system 16 Cygni. Supporting infrared observations were made with the Michigan Infrared Combiner (MIRC) and Classic beam combiner, also at the CHARA Array. We find limb-darkened angular diameters of 0.753+/-0.009 mas for {\theta} Cyg, 0.539+/-0.007 mas for 16 Cyg A and 0.490+/-0.006 mas for 16 Cyg B. The Kepler Mission has observed these stars with outstanding photometric precision, revealing the presence of solar-like oscillations. Due to the brightness of these stars the oscillations have exceptional signal-to-noise, allowing for detailed study through asteroseismology, and are well constrained by other observations. We have combined our interferometric diameters with Hipparcos parallaxes, spectrophotometric bolometric fluxes and the asteroseismic large frequency separation to measure linear radii ({\theta} Cyg: 1.48+/-0.02 Rsun, 16 Cyg A: 1.22+/-0.02 Rsun, 16 Cyg B: 1.12+/-0.02 Rsun), effective temperatures ({\theta} Cyg: 6749+/-44 K, 16 Cyg A: 5839+/-42 K, 16 Cyg B: 5809+/-39 K), and masses ({\theta} Cyg: 1.37+/-0.04 Msun, 16 Cyg A: 1.07+/-0.05 Msun, 16 Cyg B: 1.05+/-0.04 Msun) for each star with very little model dependence. The measurements presented here will provide strong constraints for future stellar modelling efforts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.