Abstract

An interferometric optical gyro (IOG) based on integrated devices are a promising alternative for miniaturized inertial sensors. However, improving their accuracy, which is determined by the sensing coil insertion loss, is crucial. In this work, an IOG is built using an integrated sensing coil produced from a 2.14-m-long SiO2 waveguide, the minimum bend radius and spacing of which are chosen to minimize the sensing coil insertion loss. The coil length is chosen by considering optimal detection limit constraints. Sinusoidal wave biasing modulation improves the system detection sensitivity. Finally, the IOG realizes the best yet reported bias drift of 7.32°/h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.