Abstract

We developed a method that accurately determines an unknown position of the high-intensity laser-pulse-material interaction site on the front side of a plate. It is based on interferometric measurements of a normal displacement at known positions on the plate’s rear side. The displacement is caused by reflections of various pulsed-laser-induced mechanical waves. We have superseded the long-established time-of-flight approach with the improved, triple-echo method. To accurately locate the origin of the laser-induced ultrasound on the plate with a known thickness, we only need to detect the arrivals of the first three consecutive mode unconverted waves. Our method works without knowing the propagation velocities of various ultrasonic waves and additionally solves some time-related drawbacks of the conventional time-of-flight approach. The relative uncertainty of the measured source-receiver separations obtained with the presented method is less than 0.01.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.