Abstract

Several aspects of both enhancement and suppression of the analyte emission intensity caused by an easily ionised element (EIE) have been studied in an atmospheric pressure He microwave-induced plasma (MIP). A sequence of experiments, designed to elucidate possible mechanisms of this EIE effect, examines the following aspects: the concentration dependence of the effect for various EIEs; spatially separated vaporisation of EIE and analyte into the plasma; the effect of operating parameters upon the EIE-induced enhancement; the influence of the EIE on the excitation temperature and on the efficiency of coupling of microwave energy to the cavity. The EIE-induced suppression of emission intensity is consistent with reduced power dissipation in the plasma, due to decoupling of the plasma from the microwave power source, whereas the EIE-induced enhancement of emission intensity is best explained by a radiative energy transfer mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call