Abstract

Fipronil and its metabolites are potentially harmful to the ecological environment and have chronic neurotoxic effects, which makes it to be classified as class C carcinogens. Fipronil has been banned from agricultural use in China since 2009, but its residue remains in the environment. Therefore, an efficient and economical method is urgently needed to degrade fipronil residues in the environment. Herein, the degradation of fipronil in water solution using argon microwave-induced plasma (MIP) system was studied and a plausible reaction pathway was proposed in combination with Density Functional Theory (DFT) calculations. The degradation of fipronil by MIP system was optimized in terms of input power, plasma-sample distance, initial concentration and gas flow rate. After short time MIP treatment with an input power of 150 W, as high as 85.62% degradation efficiency was achieved for the fipronil at concentration of 20 mg·L‐−1 under the optimized conditions, and the corresponding energy efficiency was 1334.8 mg·kwh−1. Optical emission spectrometry (OES) was employed to characterize the distribution and intensity of OH, H and O species which play key roles in the degradation of fipronil by plasma, and it revealed that the degradation reaction mainly occurs at gas-liquid interface where the highest intensity of OH, H and O species was observed. High resolution mass spectrometric analysis in combination quantum chemical calculations indicate that a wide diversity of reaction processes occurred for fipronil degradation under MIP treatment, involving oxidation or reduction, nitro reduction, oxidative dichlorination, reductive dichlorination, hydration, dehydration and thiourea to urea. The possible degradation mechanism and pathways were proposed based on the degrading species identified by high resolution Mass Spectrometry (HRMS) and the thermodynamic profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call