Abstract

We consider a particle in one dimension submitted to amplitude and phase disorder. It can be mapped onto the complex Burgers equation, and provides a toy model for problems with interplay of interferences and disorder, such as the Nguyen-Spivak-Shklovskii model of hopping conductivity in disordered insulators and the Chalker-Coddington model for the (spin) quantum Hall effect. We also propose a direct realization in an experiment with cold atoms. The model has three distinct phases: (I) a high-temperature or weak disorder phase, (II) a pinned phase for strong amplitude disorder, and (III) a diffusive phase for strong phase disorder, but weak amplitude disorder. We compute analytically the renormalized disorder correlator, equivalent to the Burgers velocity-velocity correlator at long times. In phase III, it assumes a universal form. For strong phase disorder, interference leads to a logarithmic singularity, related to zeros of the partition sum, or poles of the complex Burgers velocity field. These results are valuable in the search for the adequate field theory for higher-dimensional systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call