Abstract

We study the proximity effect in a multilayer composed of a normal metal and a superconductor with spin-active interfaces. The symmetry of the induced pair amplitude is analyzed while varying the interface distance and the direction of the interface spins. We apply the general Green’s function formalism without making the quasiclassical approximation in order to study the interference effect from the surrounding interfaces of the superconducting layer. By utilizing the formalism developed by A. Millis et al., we compute the Keldysh Green’s function while incorporating the general boundary condition for magnetic interfaces of a superconducting heterostructure. The interference can have a profound effect on the proximity phenomena in the ballistic limit when the interface distance becomes less than the superconducting coherence length. We also discuss the effect of the direction of the interface spins on the induction of the odd-frequency equal-spin pairing state, which is important for applications of ferromagnetic quantum devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.