Abstract

We study proximity effects at ferromagnet superconductor interfaces by self-consistent numerical solution of the Bogoliubov-de Gennes equations for the continuum, without any approximations. Our procedures allow us to study systems with long superconducting coherence lengths. We obtain results for the pair potential, the pair amplitude, and the local density of states. We use these results to extract the relevant proximity lengths. We find that the superconducting correlations in the ferromagnet exhibit a damped oscillatory behavior that is reflected in both the pair amplitude and the local density of states. The characteristic length scale of these oscillations is approximately inversely proportional to the exchange field, and is independent of the superconducting coherence length in the range studied. We find the superconducting coherence length to be nearly independent of the ferromagnetic polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.