Abstract

Nash noncooperative power game is an effective method to implement interference cooperation in downlink multiuser multiple-input multiple-output (MU-MIMO). Power equilibrium point of Nash noncooperative power game can achieve a satisfactory tradeoff between self-benefits of Internet of Things (IoT) users and interference between IoT users which largely enhance the edge IoT user throughput. However, either power strategy space, i.e., the enabled range of power allocation for IoT users, or overall BS transmit power in the existing Nash noncooperative power games is generally static. This limits the performance of systems, especially in IoT systems, etc., in 5G. As an effort to address these problems, we design a novel framework of Nash noncooperative game with iterative convergence for downlink MU-MIMO. We first decompose the MU-MIMO into multiple virtual single-antenna transmit-receive pairs with a stream analytical model. Afterwards, based on streams, we propose a noncooperative water-filling power game with pricing (WFPGP) where the power strategy space of each stream can be dynamically determined by iterative water-filling . We derive the sufficient condition for the existence and uniqueness of WFPGP game, in which the verification of the sufficient condition can be executed in a distributed manner. By simulations, we verify the performance of WFPGP compared to other Nash noncooperative games.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.