Abstract

In the vicinity of plasmonic nanostructures that support highly confined light fields, spontaneous emission processes, such as two-photon spontaneous emission (TPSE), exhibit higher-order multipolar emission pathways beyond the dipolar one. These multipolar emission channels occur simultaneously and can interfere with each other. We develop a novel framework that computes these interference effects for TPSE of a quantum emitter close to an arbitrary nanostructure. The model is based on the computation of Purcell factors that can be calculated with conventional electromagnetic simulations, which avoids complex analytic calculations for the environment. For a transition of a hydrogen-like emitter close to a graphene nanotriangle, we demonstrate a breakdown of the dipolar selection rule in the TPSE process. This breakdown is due to a huge enhancement of the two-electric dipole (2ED) and of the two-electric quadrupole (2EQ) transitions. We observe an important interference between these multipolar transitions, as it increases the total rate by . In the end, our framework is a complete tool to design emitters andnanostructures for TPSE, where the exploitation of previously ignored interference effects provides an additional degree of freedom, for example to boost desired transitions and to supress undesirable ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.