Abstract

Device-to-Device (D2D) communications is expected to be a key technology of the forthcoming mobile communication networks because of its benefits in terms of spectral efficiency, energy efficiency, and system capacity. To mitigate frequency collisions as well as reduce the effects of co-channel interference between user's connections, we propose an interference-aware coordinated access control (IaCAC) mechanism for heterogeneous cellular D2D communication networks with dense device deployment of user equipment (UEs). In the proposed network setting, we consider the co-existence of both macro base stations (MBSs) and smallcell base stations (SBSs). In the proposed IaCAC mechanism, MBSs and SBSs are coordinated to perform access control to their UEs while MBSs allocate bandwidth parts dynamically to SBSs based on the interference levels measured at SBSs. Besides, to reduce D2D-to-cellular interference, device user equipments (DUEs) can perform power control autonomously. Simulation results show that the proposed IaCAC can provide higher system throughput and user throughput than those achieved by the network-assisted device-decided scheme proposed in [21]. Moreover, simulation results also reveal that the proposed IaCAC also significantly improve SINR of MUE’s and SUE’s uplink connections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.