Abstract

Abstract This paper is concerned with the interfacial adhesion and failure of underfill materials in flip-chip packages. Debonding of polymer-metal interfaces often involves both interfacial and cohesive failure. Since the cohesive strength of polymers is usually much greater than the polymer-metal interfacial strength, cohesive failure near the interface is usually desired to enhance the interfacial adhesion. Roughened surfaces generally produce more cohesive failure, therefore, are used commonly in practice to obtain better adhesion. In this paper a fracture mechanics model is developed that can be used to quantitatively predict the amount of cohesive failure once the surface roughness data are given. An epoxy/Al interface was investigated using this fracture mechanics model. The predicted amount of cohesive failure as a function of surface roughness compares very well with the experimentally measured values. It is believed that this model can be extended to other polymer – metal interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.