Abstract

ABSTRACTThe stringiness of crosslinked polyacrylic pressure‐sensitive adhesive (PSA) was observed during 90° peeling under the constant peel load. The random copolymer of butyl acrylate with 5 wt % acrylic acid crosslinked by N,N,N′,N′‐tetraglycidyl‐m‐xylenediamine was used as PSA. All observed stringiness upon peeling was sawtooth‐shaped, but it could be classified into three types dependent on the degree of crosslinking. The typical sawtooth‐shaped stringiness with interfacial failure was observed at the relatively higher crosslinker content ranging from 0.008 to 0.016 chemical equivalents (Eq.), where the PSA has high cohesive strength and low interfacial adhesion. The frame formed at the front end of stringiness at the content ranging from 0.002 to 0.004 Eq. Sufficient interfacial adhesion and deformability generate large internal deformation of the PSA layer. Internal deformation occurred preferentially over peeling as a result of front frame formation. The mode of peeling was changed from cohesive failure to interfacial failure in this range of crosslinker content. The sawtooth‐shaped with cohesive failure was observed at the lower content ranging from 0 to 0.001 Eq. The PSA has high interfacial adhesion and low cohesive strength, and thus exhibited cohesive failure. The PSA after peeling remained in the shape of belts. It was found that the shape of stringiness is strongly dependent on the balance between the interfacial adhesion and the cohesive strength of PSA. When the sawtooth‐shaped stringiness with frame formed, the peeling rate was lowest. This means the peel strength should be the maximum in this shape of stringiness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40336.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call